

REPORT

25-0742 S

July 11, 2025

Explorations and Geotechnical Engineering Services

Proposed Maintenance Building MTA Crosby Maintenance Facility South Portland, Maine

Prepared For:

Harriman Attention: Alexander R. Wheelock, P.E. 80 Exchange Street Portland, ME 04101

Prepared By:

S. W. Cole Engineering, Inc. 286 Portland Road Gray, ME 04039 T: 207-657-2866

TABLE OF CONTENTS

1.0 INTRODUCT	ION	1
1.1 Scope and	Purpose	1
1.2 Site and Pr	oposed Construction	1
2.0 EXPLORATION	ON AND TESTING	2
2.1 Exploration	s	2
2.2 Field Testin	ng	2
2.3 Laboratory	Testing	2
3.0 SUBSURFAC	CE CONDITIONS	3
3.1 Soil and Be	edrock	3
3.2 Groundwat	er	3
4.0 EVALUATION	N AND RECOMMENDATIONS	4
4.1 General Fir	ndings	4
4.2 Site and Su	ubgrade Preparation	5
4.3 Excavation	and Dewatering	5
4.4 Foundation	s	6
4.4.1 Grou	ınd Improvement	7
4.5 Foundation	Drainage	7
4.6 Slab-On-Gr	rade	8
4.7 Entrance S	labs and Sidewalks	8
4.8 Fill, Backfill	and Compaction	9
4.9 Weather Co	onsiderations	10
4.10 Design Re	eview and Construction Testing	10
5.0 CLOSURE		11
Appendix A	Limitations	
Appendix B	Figures	
Appendix C	Exploration Logs & Key	
Appendix D	Laboratory Test Results	

25-0742 S

July 11, 2025

Harriman

Attention: Alexander R. Wheelock, P.E.

80 Exchange Street Portland, ME 04101

Subject: Explorations and Geotechnical Engineering Services

Proposed Maintenance Building

Maine Turnpike Authority Crosby Maintenance Facility

South Portland, Maine

Dear Alex:

In accordance with our Proposal, dated May 12, 2025, we have performed subsurface explorations for the subject project. This report summarizes our findings and geotechnical recommendations, and its contents are subject to the limitations set forth in Appendix A.

1.0 INTRODUCTION

1.1 Scope and Purpose

The purpose of our services was to obtain subsurface information at the site in order to develop geotechnical recommendations relative to foundations and earthwork associated with the proposed construction. Our scope of services included test boring explorations, soils laboratory testing, a geotechnical analysis of the subsurface findings, and preparation of this report.

1.2 Site and Proposed Construction

The site is located at the existing Maine Turnpike Authority (MTA) Crosby Maintenance Facility, on the westerly side of the MTA mainline, in South Portland, Maine. The site includes an existing grass and gravel-surfaced area on the easterly edge of the paved yard. Existing grades slope down to the east, towards the MTA mainline, ranging from approximately elevation 84 to 71 feet (project datum).

We understand development plans include a new on-grade, single-story maintenance building measuring about 60 by 115 feet in plan dimensions. We anticipate the building will consist of high-bay, pre-engineered metal construction. We understand finish floor elevation is proposed at 84 feet, requiring tapered grade-raise fills approaching about 8 feet beneath the building. A 3H:1V fill slope about 12 feet tall is proposed on the easterly side of the building.

Proposed and existing site features are shown on the "Exploration Location Plan" attached in Appendix B.

2.0 EXPLORATION AND TESTING

2.1 Explorations

Five test borings (B-401 through B-405) were made at the site on June 10, 2025, by Seaboard Drilling, LLC working under subcontract to S. W. Cole Engineering, Inc. (S.W.COLE). The exploration locations were selected and established in the field by S.W.COLE using measurements from existing site features. The approximate exploration locations are shown on the "Exploration Location Plan" attached in Appendix B. Logs of the explorations and a key to the notes and symbols used on the logs are attached in Appendix C. The elevations shown on the logs were estimated based on topographic information shown on the "Exploration Location Plan".

2.2 Field Testing

The test borings were drilled using a combination of hollow stem auger and cased wash-boring techniques. The soils were sampled at 2-to-5-foot intervals using a split spoon sampler and Standard Penetration Testing (SPT) methods. Pocket Penetrometer Tests (PPT) were performed where stiffer cohesive soils were encountered. SPT blow counts and PPT results are shown on the logs.

2.3 Laboratory Testing

Soil samples obtained from the explorations were returned to our laboratory for further classification and testing. The results of two soil moisture content tests are shown on the boring logs. The results of two grain size analyses are attached in Appendix D.

3.0 SUBSURFACE CONDITIONS

3.1 Soil and Bedrock

The test borings encountered a subsurface profile generally consisting of uncontrolled fill overlying glaciomarine deposits of silty clay, clayey silt and sand with varying portions of silt and gravel, overlying refusal surfaces (probable bedrock). The principal soils encountered at the explorations are summarized below. Not all of the strata were encountered at each exploration; refer to the attached boring logs for more detailed subsurface information.

<u>Uncontrolled Fill</u>: Underlying a surficial layer of topsoil, where encountered, the borings encountered uncontrolled fill extending to depths ranging from about 2 to 15 feet below existing ground surface (bgs). The uncontrolled fill consisted of very loose to medium dense sand with varying portions of silt and gravel, and stiff silty clay with varying portions of sand and gravel. In borings B-401, B-404 and B-405, the uncontrolled fill included layers of buried asphalt pavement rubble up to about 5 feet thick.

<u>Glaciomarine Soils</u>: Underlying the uncontrolled fill, the borings encountered native glaciomarine deposits of very stiff to hard silty clay and clayey silt and loose to dense sand with varying portions of silt and gravel.

<u>Refusal Surfaces</u>: Underlying the glaciomarine soils, the borings encountered refusal surfaces (probable bedrock) at depths ranging from about 8 to 24 feet bgs.

3.2 Groundwater

The soils encountered in the test borings were moist to wet from the ground surface. Saturated soils were encountered at depths varying from 2 to 5 feet bgs. Groundwater likely becomes perched in the uncontrolled fill and on the relatively impervious silts and clays encountered in the test borings. Long term groundwater information is not available. It should be anticipated that groundwater levels will fluctuate, particularly in response to periods of snowmelt and precipitation, as well as changes in site use.

4.0 EVALUATION AND RECOMMENDATIONS

4.1 General Findings

Based on the subsurface findings, the proposed construction appears feasible from a geotechnical standpoint; however, the site does present some geotechnical limitations. The principal geotechnical considerations include:

- The test borings encountered up to about 15 feet of uncontrolled fill which is unsuitable for support of the proposed building. We recommend the uncontrolled fill be removed from beneath the proposed building and base of the fill embankment to expose the underlying undisturbed, non-organic native soils, and replaced with compacted Granular Borrow.
- Alternatively, rammed aggregate pier ground improvement could be installed through the uncontrolled fill to support the proposed building foundations, floor slabs, and entrance slabs, as well as the fill embankment. However, based on the presence of thick layers of buried asphalt pavement rubble in the uncontrolled fill, ground improvement installation may be difficult and would require pre-drilling.
- In all cases, the existing pavement, topsoil, utilities and structures should be removed from beneath the proposed building and fill embankment and replaced with compacted Granular Borrow.
- Subgrades across the site will consist of uncontrolled fill overlying sensitive wet silts, clays and silty sand. Earthwork and grading activities should occur during drier, non-freezing weather of Spring, Summer and Fall. Rubber tired construction equipment should not operate directly on the native silt and clays when wet. Excavation of bearing surfaces should be completed with a smooth-edged bucket to lessen subgrade disturbance.
- Imported Granular Borrow, Structural Fill, and Crushed Stone will be required for construction. Portions of the existing granular fills, free of organics, deleterious materials, asphalt pavement rubble, and debris, may be suitable for reuse as Granular Borrow to backfill over-excavations provided they are at a compactable moisture content at the time of reuse.

4.2 Site and Subgrade Preparation

We recommend that site preparation begin with the construction of an erosion control system to protect adjacent drainage ways and areas outside the construction limits. Surficial organics, roots and topsoil should be completely removed from areas of proposed fill and construction. As much vegetation and pavement as possible should remain outside the construction areas to lessen the potential for erosion and site disturbance.

As discussed, the borings encountered a variable thickness of uncontrolled fill which is unsuitable for support of the proposed building and fill embankment. We recommend the uncontrolled fill, as well as existing pavement, organics, structures, and utilities, be removed from beneath the proposed building footprint (including foundations, floor slabs, and entrance slabs) and the base of proposed the fill embankment to expose the underlying undisturbed, non-organic, native soils. The extent of removal should extend 1 foot laterally outward from outside edge of perimeter footings and toe of the fill embankment for every 1-foot of excavation depth (1H:1V bearing splay). The over-excavated area should be backfilled with compacted Granular Borrow. Initial lifts of Granular Borrow for Underwater Backfill will be required over wet subgrades.

Alternatively, rammed aggregate pier ground improvement could be installed through the uncontrolled fill to support the proposed building foundations, floor slabs, and entrance slabs, as well as the fill embankment.

We recommend that footings be excavated using a smooth-edged bucket and that footings be underlain by at least 6 inches of Crushed Stone overlying properly prepared subgrades. A thicker layer of Crushed Stone may be needed for load distribution of foundations supported by soils with ground improvement.

4.3 Excavation and Dewatering

Excavation work will generally encounter uncontrolled fills with asphalt pavement rubble and debris, silty sand, silt, and clay soils. Care must be exercised during construction to limit disturbance of the bearing soils. Earthwork and grading activities should occur during drier, non-freezing weather of Spring, Summer and Fall. Rubber tired construction equipment should not operate directly on the native soils when wet. Final cuts to subgrade should be performed with a smooth-edged bucket to help reduce strength loss from soil disturbance.

Vibrations from construction should be controlled below threshold limits of 0.5 in/sec for structures, water supply wells and infrastructure within 500 feet of the project site. More restrictive vibration limits may be warranted in specific cases with sensitive equipment, historic structures or artifacts on-site or within close proximity.

Relatively shallow groundwater was encountered in the test borings. The contractor should anticipate the need to dewater and stabilize excavations, particularly deep over-excavations to remove the unsuitable soils which will extend below groundwater. Controlling the water levels to at least one foot below planned excavation depths will help stabilize subgrades during construction. Excavations must be properly shored or sloped in accordance with OSHA Regulations to prevent sloughing and caving of the sidewalls during construction. Care must be taken to preclude undermining adjacent structures, utilities and roadways. The design and planning of excavations, excavation support systems, and dewatering is the responsibility of the contractor.

4.4 Foundations

We recommend the proposed building be supported on spread footings founded on at least 6 inches of compacted Crushed Stone overlying undisturbed, non-organic native soils, or overlying compacted Granular Borrow used to backfill over-excavations down to undisturbed, non-organic, native soils. For foundations bearing on properly prepared subgrades, we recommend the following geotechnical parameters for design consideration:

Geotechnical Parameters for Spread F	Footings and Foundation Walls
Design Frost Depth (100-year AFI)	4.5 feet
Net Allowable Soil Bearing Pressure	3.0 ksf
Base Friction Factor	0.35
Total Unit Weight of Backfill	125 pcf
At-Rest Lateral Earth Pressure Coefficient	0.5
Internal Friction Angle of Backfill	30°
Seismic Soil Site Class	D (IBC 2021)
Estimated Total Settlement	1-inch
Differential Settlement	½-inch

4.4.1 Ground Improvement

As an alternate to removing and replacing the unsuitable soils, rammed aggregate pier ground improvement could be installed through the uncontrolled fill and into the underlying non-organic native soils or bedrock to support the proposed building foundations, floor slabs, entrance slabs, as well as the fill embankment. In this case, proposed building footings should be underlain with at least 6 inches of compacted Crushed Stone, bearing on improved ground. It should be noted that a thicker layer of Crushed Stone may be needed for load distribution of foundations supported by ground improvement. For foundations bearing on properly prepared subgrades, we recommend the following geotechnical parameters for design consideration:

Geotechnical Parameters for Spread Footings on Improved Ground								
Design Frost Depth (100-year AFI)	4.5 feet							
Net Allowable Soil Bearing Pressure (Improved Ground)	4.0 ksf							
Base Friction Factor	0.4							
Total Unit Weight of Backfill	125 pcf							
At-Rest Lateral Earth Pressure Coefficient	0.5							
Internal Friction Angle of Backfill	30°							
Seismic Soil Site Class	D (IBC 2015)							
Total Settlement (Improved Ground)	1-inch							
Differential Settlement (Improved Ground)	½-inch							

We recommend the contract documents require an engineered submittal for aggregate piers to improve ground conditions to meet or exceed the geotechnical parameters for bearing capacity and settlement as recommended herein. The aggregate pier submittal must include QC and modulus testing procedures. We recommend load testing be completed prior to installing production elements. The aggregate submittal must be prepared and sealed by a Professional Engineer licensed in the State of Maine and endorsed by the Installer.

4.5 Foundation Drainage

We recommend an underdrain system be installed on the outside edge of perimeter building footings. The underdrain pipe should consist of 4-inch diameter, perforated SDR-35 foundation drainpipe bedded in Crushed Stone and wrapped in non-woven geotextile fabric. The underdrain pipe must have a positive gravity outlet protected from freezing, clogging and backflow. Surface grades should be sloped away from the building for

positive surface water drainage. General underdrain details are illustrated on the "Foundation Detail Sketch" attached in Appendix B.

4.6 Slab-On-Grade

On-grade floor slabs in heated areas may be designed using a subgrade reaction modulus of 100 pci (pounds per cubic inch) provided the slab is underlain by at least 12 inches of compacted Structural Fill placed over properly prepared subgrades, as discussed herein. The structural engineer or concrete consultant must design steel reinforcing and joint spacing appropriate to slab thickness and function, as well as cracking and curling.

We recommend a sub-slab vapor retarder particularly in areas of the building where the concrete slab will be covered with an impermeable surface treatment or floor covering that may be sensitive to moisture vapors. The vapor retarder must have a permeance that is less than the floor cover or surface treatment that is applied to the slab. The vapor retarder must have sufficient durability to withstand direct contact with the sub-slab base material and construction activity. The vapor retarder material should be placed according to the manufacturer's recommended method, including the taping and lapping of all joints and wall connections. The architect and/or flooring consultant should select the vapor retarder products compatible with flooring and adhesive materials.

The floor slab should be appropriately cured using moisture retention methods after casting. Typical floor slab curing methods should be used for at least 7 days. The architect or flooring consultant should assign curing methods consistent with current applicable American Concrete Institute (ACI) procedures with consideration of curing method compatibility to proposed surface treatments, flooring and adhesive materials.

4.7 Entrance Slabs and Sidewalks

Entrance slabs and sidewalks adjacent to the building must be designed to reduce the effects of differential frost action between adjacent pavement, doorways, and entrances. We recommend that non-frost susceptible Structural Fill be provided to a depth of at least 4.5 feet below the top of entrance slabs. This thickness of Structural Fill should extend the full footprint of the entrance slab, thereafter, transitioning up to the bottom of the adjacent sidewalk or pavement gravels at a 3H:1V or flatter slope. General details

of this frost transition zone are shown on the "Foundation Detail Sketch" attached in Appendix B.

4.8 Fill, Backfill and Compaction

We recommend the following fill and backfill materials: recycled products must also be tested in accordance with applicable environmental regulations and approved by a qualified environmental consultant.

<u>Common Borrow</u>: Fill to raise grades in landscape areas, outside of the building foundation zone-of-influence, may be non-organic compactable earth meeting the requirements of 2020 MaineDOT Standard Specification 703.18 Common Borrow.

<u>Granular Borrow</u>: Backfill for over-excavations and fill to raise grades in building and paved areas should be sand meeting the requirements of 2020 MaineDOT Standard Specification 703.19 Granular Borrow. Granular Borrow for Underwater Backfill will be required over wet subgrades.

<u>Structural Fill</u>: Backfill for foundations, slab base material, and material below exterior entrances slabs should be clean, non-frost susceptible sand and gravel meeting the gradation requirements for Structural Fill as given below:

Structu	ral Fill
Sieve Size	Percent Finer by Weight
4 inch	100
3 inch	90 to 100
½ inch	25 to 90
No. 40	0 to 30
No. 200	0 to 6

<u>Crushed Stone</u>: Crushed Stone, used beneath foundations and for underdrain aggregate, should be washed ¾-inch crushed stone meeting the requirements of 2020 MaineDOT Standard Specification 703.13 Crushed Stone ¾-Inch.

Reuse of Site Soils: Portions of the existing granular fill, free of organics, deleterious materials, asphalt pavement rubble, and debris, may be suitable for reuse as Granular Borrow provided they are at a compactable moisture content at the time of reuse. The

existing clays, silts, and miscellaneous fill and rubble are unsuitable for reuse in proposed building and embankment areas.

<u>Placement and Compaction</u>: Fill should be placed in horizontal lifts and compacted such that the desired density is achieved throughout the lift thickness with 3 to 5 passes of the compaction equipment. Loose lift thicknesses for grading, fill and backfill activities should not exceed 12 inches. We recommend that fill and backfill in building and paved areas be compacted to at least 95 percent of its maximum dry density as determined by ASTM D-1557. Crushed Stone should be compacted with 3 to 5 passes of a vibratory plate compactor having a static weight of at least 500 pounds.

4.9 Weather Considerations

Construction activity should be limited during wet and freezing weather and the site soils may require drying or thawing before construction activities may continue. The contractor should anticipate the need for water to temper fills in order to facilitate compaction during dry weather. If construction takes place during cold weather, subgrades, foundations and floor slabs must be protected during freezing conditions. Concrete and fill must not be placed on frozen soil; and once placed, the concrete and soil beneath the structure must be protected from freezing.

4.10 Design Review and Construction Testing

S.W.COLE should be retained to review the construction documents prior to bidding to determine that our earthwork, foundation and pavement recommendations have been properly interpreted and implemented.

A construction materials testing and quality assurance program should be implemented during construction to observe compliance with the design concepts, plans, and specifications. S.W.COLE is available to observe earthwork activities, the preparation of foundation bearing surfaces and pavement subgrades, as well as to provide testing and IBC Special Inspection services for soils, concrete, steel, spray-applied fireproofing, firestopping, structural masonry and asphalt construction materials.

5.0 CLOSURE

It has been a pleasure to be of assistance to you with this phase of your project. We look forward to working with you during the construction phase of the project.

Sincerely,

S. W. Cole Engineering, Inc.

Evan M. Walker, P.E. Senior Geotechnical Engineer

EMW:mas

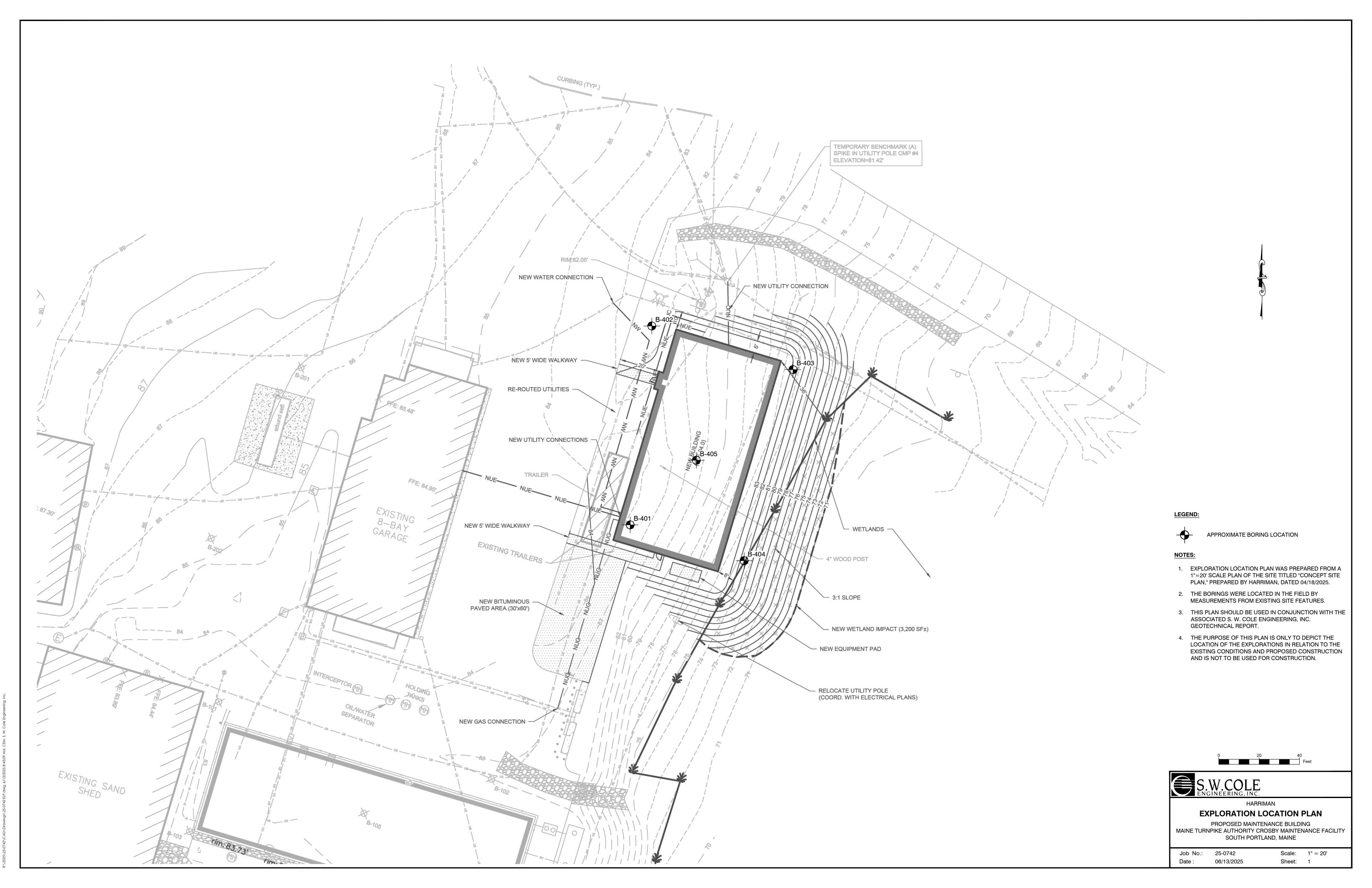
APPENDIX A

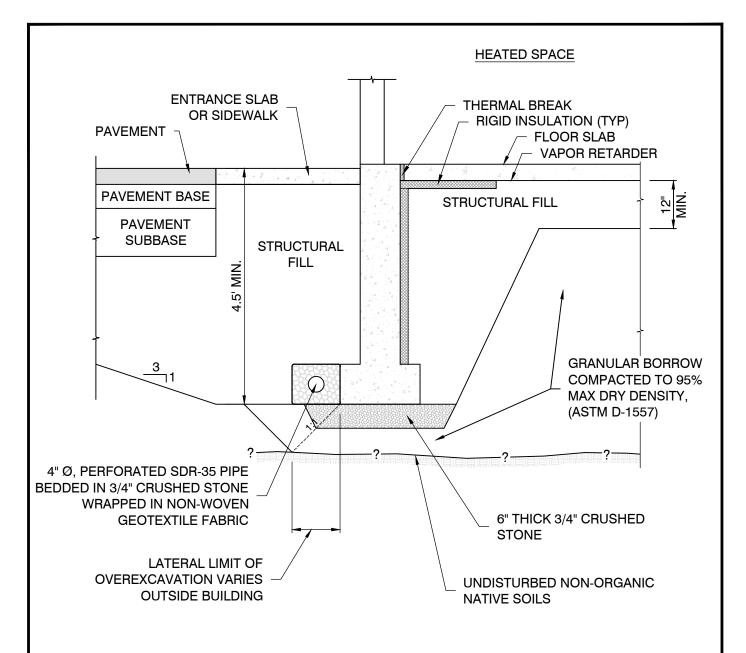
Limitations

This report has been prepared for the exclusive use of Harriman for specific application to the proposed Maintenance Building at the Maine Turnpike Authority Crosby Maintenance Facility in South Portland, Maine. S. W. Cole Engineering, Inc. (S.W.COLE) has endeavored to conduct our services in accordance with generally accepted soil and foundation engineering practices. No warranty, expressed or implied, is made.

The soil profiles described in the report are intended to convey general trends in subsurface conditions. The boundaries between strata are approximate and are based upon interpretation of exploration data and samples.

The analyses performed during this investigation and recommendations presented in this report are based in part upon the data obtained from subsurface explorations made at the site. Variations in subsurface conditions may occur between explorations and may not become evident until construction. If variations in subsurface conditions become evident after submission of this report, it will be necessary to evaluate their nature and to review the recommendations of this report.


Observations have been made during exploration work to assess site groundwater levels. Fluctuations in water levels will occur due to variations in rainfall, temperature, and other factors.


S.W.COLE's scope of services has not included the investigation, detection, or prevention of any Biological Pollutants at the project site or in any existing or proposed structure at the site. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria, and viruses, and the byproducts of any such biological organisms.

Recommendations contained in this report are based substantially upon information provided by others regarding the proposed project. In the event that any changes are made in the design, nature, or location of the proposed project, S.W.COLE should review such changes as they relate to analyses associated with this report. Recommendations contained in this report shall not be considered valid unless the changes are reviewed by S.W.COLE.

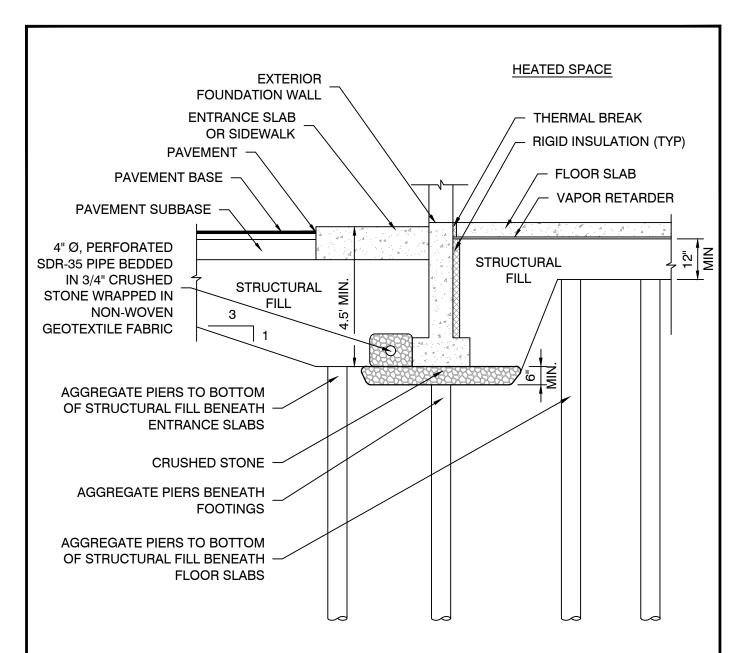
APPENDIX B

Figures

OVER-EXCAVATION & REPLACEMENT OPTION

NOTE:

- UNDERDRAIN INSTALLATION AND MATERIAL GRADATION RECOMMENDATIONS ARE CONTAINED WITHIN THIS REPORT.
- DETAIL IS PROVIDED FOR ILLUSTRATIVE PURPOSES ONLY, NOT FOR CONSTRUCTION.


HARRIMAN

FOUNDATION DETAIL SKETCH

PROPOSED MAINTENANCE BUILDING
MAINE TURNPIKE AUTHORITY CROSBY MAINTENANCE FACILITY
SOUTH PORTLAND, MAINE

Job No.: 25-0742 Scale: Not to Scale

Date: 07/11/2025 Sheet: 2

GROUND IMPROVEMENT OPTION

NOTE:

- UNDERDRAIN INSTALLATION AND MATERIAL GRADATION RECOMMENDATIONS ARE CONTAINED WITHIN THIS REPORT.
- DETAIL IS PROVIDED FOR ILLUSTRATIVE PURPOSES ONLY, NOT FOR CONSTRUCTION.

HARRIMAN

FOUNDATION DETAIL SKETCH

PROPOSED MAINTENANCE BUILDING
MAINE TURNPIKE AUTHORITY CROSBY MAINTENANCE FACILITY
SOUTH PORTLAND, MAINE

Job No.: 25-0742 Scale: Not to Scale

Date: 07/11/2025 Sheet: 3

APPENDIX C

Exploration Logs and Key

	_						В	ORIN	G I	LOG			RING NO	D.:	B-401 1 of 1
			ENT: _										DJECT N	_	25-0742
						d Mainte						-	TE STAF		6/10/202
S.W.CC	OLE	LO	CATION	: <u> </u>	Maine T	Turnpike	Authority	y Crosby Ma	inten	ance Facili	ty, South Portland, Maine	_ DA1	TE FINIS	H:	6/10/202
rilling															
	_		ploration					ON (FT): 83'			· · · ———		D BY: K	Kyle Ka	serman
			board Drounted Di					Jeremy Adar JOD: 4 1/4 ir		/8 in	DRILLING METHOD: Hollow Stem SAMPLER: Standard Split-Spoon	Augers	i		
IAMMER				Cuii	ICIT D-30			WEIGHT (lbs)				ORE E	BARREL:		
				TOF	₹:			DROP (inch):							
			HS (ft):	<u>_</u> ∑	5 ft Sc	oils saturat	ted belwo	5' +/-							
SENERA KEY TO N			er Level			D = Split S	Spoon Samp	ole Pen	= Pene	tration Length	WOR = Weight of Rods S _v = F	ield Vane	Shear Str	enath k	rine/ea ft
		∑ At ▼ At	time of Dr	n of		U = Thin V R = Rock (Valled Tube	Sample Rec. : e bpf =	= Reco Blows	very Length per Foot e per Foot	WOH = Weight of Hammer $q_U = U$ RQD = Rock Quality Designation \emptyset = Fr	nconfine	d Compres	sive Str	rength, kips/
					SAMPL	LE INFO	RMATIO	N	D						
	epth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec.	Blow Count or	Field / Lab Test Data	Graphic Log		Sample Description & Classification		H ₂ 0 Depth	R	Remarks
			40	Ц	. ,	(in)	RQD		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						
			1D	M	0-2	24/20	3-12- 31-25			114 -	ss / Topsoil (FILL) se, ASPHALT PAVEMENT RUBBLE	/			
†				$ \Lambda $					\bowtie	(FIL		_			
+				H					\bowtie						
80 🗕									\bowtie						
									\bowtie						
Ť									\bowtie						
+	5		2D	H	5-7	24/15	2-2-1-2	q _P =2-4.5 ksf	\bowtie	F 4			$\overline{\Delta}$		
+				$ \chi $					\bowtie		to hard, gray-brown, silty CLAY, son rel, with occasional sand seams (FIL				
				\mathbb{N}					\bigotimes		,				
Ţ										7.0 Very	dense, light brown, silty SAND, son	ne			
75 —										grav	· GI				
+															
1	10		20	Ц	10.40	24/40	14.00								
	10		3D	M	10-12	24/18	14-32- 21-20								
†				X											
+				H											
r ₀ \perp															
†															
+	15		4D	H	15-17	24/18	15-13-	ID 33142G		15.0 Med	lium dense, light brown, silty SAND,				
1				V			12-9	w =11 %			e gravel				
				\mathbb{N}											
†				П											
65 +															
1															
	-														
T	20		5D	\square	20-22	24/24	7-13- 14-11								
+				$ \chi $			'			21.0 Med	lium dense, gray, SILT AND SAND,				
1				Д							e gravel, with weathered rock				
.															
60 +										23.5 Prol	pable Weathered BEDROCK				
			L	ш				I		Prol	Refusal at 24.0 feet				
			nt approxin			Т									
undary b adual. Wa	etween ater lev	ı soil typ el readii	es, transition	ons r een	may be made										
uctuations	s of gro	undwate	ons stated. er may occ	ur dı											
ner factor easureme			esent at th	e tim	ne	1						BOE	RING NO	٠.	B-401

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

	BORING LOG
	CLIENT: Harriman PROJECT: Proposed Maintenance Building
S.W.COLE	LOCATION: Maine Turnpike Authority Crosby Maintenance Facility, South Portland, Maine
Drilling Info	rmation

BORING NO.: B-402
SHEET: 1 of 1
PROJECT NO. 25-0742
DATE START: 6/10/2025
DATE FINISH: 6/10/2025

TOTAL DEPTH (FT): __18.0 LOGGED BY: Kyle Kaserman

DRILLING METHOD: Cased Boring

SAMPLER: _Standard Split-Spoon

CASING ID/OD: 3 in / 3 1/2 in CORE BARREL:

HAMMER TYPE: Automatic / Automatic / HAMMER WEIGHT (Ibs): 140 / 140

HAMMER CORRECTION FACTOR: HAMMER DROP (inch): 30 / 30

WATER LEVEL DEPTHS (ft): \$\sqrt{5}\$ ft Soils saturated below 5' +/-

GENERAL NOTES:

LOCATION: See Exploration Location Plan

RIG TYPE: Track Mounted Diedrich D-50

DRILLING CO.: Seaboard Drilling

D = Split Spoon Sample
U = Thin Walled Tube Sample
R = Rock Core Sample
V = Field Vane Shear

ELEVATION (FT): 82' +/-

DRILLER: Jeremy Adams

AUGER ID/OD: N/A / N/A

Pen. = Penetration Length Rec. = Recovery Length bpf = Blows per Foot mpf = Minute per Foot WOR = Weight of Rods WOH = Weight of Hammer RQD = Rock Quality Designation S_v = Field Vane Shear Strength, kips/sq.ft. q_U = Unconfined Compressive Strength, kips/sq.ft. Ø = Friction Angle (Estimated)

PID = Photoionization Detector N/A = Not Applicable

				SAMPL	E INFO	RMATIO	N	g			
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Log	Sample Description & Classification	H ₂ 0 Depth	Remarks
- 80 — -	-		1D 2D	2-4	24/7	5-7-7-6 5-4-3-3			Medium dense to loose, light brown, gravelly SAND, trace silt (FILL)		
- - 75 —	5		3D	5-7	24/3	5-3-2-1			5.0 Loose, brown, SAND AND GRAVEL, some silt (FILL)	Δ	
-			4D	7-9	24/3	2-2-2-1			7.0 Very loose, brown, gravelly SAND, some silt (FILL)		
70 — -	— 10 —		5D	10-12	24/14	WOH- 2-1-1			10.0 Very loose, light brown to gray, gravelly medium to coarse SAND (FILL)		
- 65 —	15		6D	15-17	24/16	4-6-5-5	ID 33141G w =13.6 %		Geotextile Fabric in Wash Medium dense, gray-brown, silty SAND, some gravel		
									17.8 Probable Weathered BEDROCK Refusal at 18.0 feet		

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

BORING NO.:

B-402

BORING / WELL 10-12-2022 25-0742.GPJ SWCE TEMPLATE.GDT 7/9/25

6							В	ORIN	G I	OG			BORI SHEE	NG NO.: _ T:	B-403 1 of 1
S.W.C	COLE	PRO		_P	roposed		enance Bo		inten	ce Facility	, South Portland, Maine	9	DATE	JECT NO. START: START:	25-0742 6/10/202 6/10/202
OCAT PRILLI RIG TY HAMMI HAMMI VATER	NG CO. 'PE: TI ER TYPI ER COR	See Expression Seal Seal More Rection Seal Seal Seal Seal Seal Seal Seal Seal	board Dr board Dr bunted Di tomatic ON FAC	illing iedri TOR	ch D-50	[DRILLER: AUGER ID HAMMER	PN (FT):76' Jeremy Adar /OD:4 1/4 ii WEIGHT (Ibs) DROP (inch): 5' +/-	ms n / 7 5 : _14	n :	TOTAL DEPTH (FT): 17 DRILLING METHOD: Ho SAMPLER: Standard Sp CASING ID/OD: N/A /N/A	ollow Stem A lit-Spoon		BY: Kyle k	(aserman
KEY TO	O NOTES YMBOLS:	<u>Wate</u> <u>∇</u> At <u>▼</u> At	r <u>Level</u> time of Dr Completic ter Drilling	on of	Drilling	U = Thin V R = Rock (Spoon Samp Valled Tube Core Sample Vane Shear	Sample Rec. bpf =	= Reco Blows	ion Length y Length Foot er Foot	WOR = Weight of Rods WOH = Weight of Hammer RQD = Rock Quality Designati PID = Photoionization Detector	$q_U = Unc$ on $\emptyset = Frict$	confined tion Angl	e (Estimated)	, kips/sq.ft. Strength, kips/s
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.		Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	N Field / Lab Test Data	Graphic Log		Sample Description & Classification		F De	H ₂ 0 epth	Remarks
75 — - -			1D 2D		0-2 2-4	24/3	1-2-5-6			Loose silt, w Loose grave Mediu	s / Topsoil (FILL) e, brown, SAND, some graith asphalt pavement ruble, dark brown, silty SAND I (FILL) um dense to dense, light bo, some gravel	, some			
- 70 — -	5 		3D	X	5-7	24/13	7-13- 20-22						Z	7	
- 65 — -	- 10 -		4D	X	10-12	24/10	16-17- 13-14								
60 —	- - 15 -		5D		15-17	24/9	9-7-3-1			trace	e, light brown, fine SAND, gravel able Weathered BEDROC				
	ution lines										Refusal at 17.3 fee	et			

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

	ノ
SW	COLE

BORING LOG

CLIENT: Harriman **PROJECT:** Proposed Maintenance Building LOCATION: Maine Turnpike Authority Crosby Maintenance Facility, South Portland, Maine BORING NO.: B-404 SHEET: 1 of 1

PROJECT NO. 25-0742 DATE START: 6/10/2025 DATE FINISH: 6/10/2025

Drilling Informatio	n
----------------------------	---

LOCATION: See Exploration Location Plan **ELEVATION (FT):** __74' +/-DRILLING CO.: Seaboard Drilling DRILLER: Jeremy Adams AUGER ID/OD: 3 1/4 in / 6 1/2 in RIG TYPE: Track Mounted Diedrich D-50

HAMMER WEIGHT (lbs): 140 HAMMER TYPE: Automatic HAMMER DROP (inch): 30

HAMMER CORRECTION FACTOR: _____

GENERAL NOTES:

KEY TO NOTES AND SYMBOLS:

D = Split Spoon Sample U = Thin Walled Tube Sample ▼ At Completion of Drilling R = Rock Core Sample

Pen. = Penetration Length Rec. = Recovery Length bpf = Blows per Foot

WOR = Weight of Rods WOH = Weight of Hammer RQD = Rock Quality Designation

CASING ID/OD: N/A /N/A

DRILLING METHOD: Hollow Stem Auger

SAMPLER: Standard Split-Spoon

S_v = Field Vane Shear Strength, kips/sq.ft. q_U = Unconfined Compressive Strength, kips/sq.ft. \varnothing = Friction Angle (Estimated)

CORE BARREL:

TOTAL DEPTH (FT): 8.2 LOGGED BY: Kyle Kaserman

	¥ At	ter Drilling		V = Field \	/ane Shear	mpf =	Minute	e per Foot PID = Photoionization Detector N/A = Not Ap	plicable	
			SAMPL	E INFO	RMATIO	N	g			
Elev. Dep	th Casing Pen. (bpf)	Sample No.	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Lo	Sample Description & Classification	H ₂ 0 Depth	Remarks
70 —	5	1D 2D 3D	2-4	24/12 24/8 24/24	2-7-10- 5 1-1-1-3 4-5-6-8	q _p =3.5-8.5 ksf		Vegetation / Topsoil (FILL) Medium dense, ASPHALT PAVEMENT RUBBLE (FILL) 2.0 Very loose, dark brown, silty SAND, trace gravel, with roots and organics 4.0 Very stiff to hard, gray, silty CLAY, with frequent sand seams	Ţ	
+								7.5 Probable Weathered BEDROCK Refusal at 8.2 feet		

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time

measurements were made

BORING NO.:

B-404

		BORING LOG		BORING NO.:	B-4
				SHEET:	1 of
	CLIENT: Harriman	PROJECT NO.	25-07		
	PROJECT: Proposed Main	DATE START:	6/10/2		
S.W.COLE	LOCATION: Maine Turnpik	te Authority Crosby Maintenance Facil	ity, South Portland, Maine	DATE FINISH:	6/10/2
Drilling Infor	mation				
LOCATION: Se	ee Exploration Location Plan	ELEVATION (FT): 81' +/-	TOTAL DEPTH (FT): 22.7 L	OGGED BY: Kyle k	Kaserman
DRILLING CO.:	Seaboard Drilling	DRILLER: _Jeremy Adams	DRILLING METHOD: Hollow Stem	Auger	
RIG TYPE: Tra	ack Mounted Diedrich D-50	AUGER ID/OD: 3 1/4 in / 6 1/2 in	SAMPLER: Standard Split-Spoon	·	
HAMMER TYPE	: Automatic	HAMMER WEIGHT (lbs): 140	CASING ID/OD: N/A /N/A C	ORE BARREL:	

HAMMER DROP (inch): 30

GENERAL NOTES: KEY TO NOTES AND SYMBOLS: WOR = Weight of Rods WOH = Weight of Hammer RQD = Rock Quality Designation D = Split Spoon Sample Pen. = Penetration Length S_v = Field Vane Shear Strength, kips/sq.ft. U = Thin Walled Tube Sample Rec. = Recovery Length bpf = Blows per Foot q_U = Unconfined Compressive Strength, kips/sq.ft. \emptyset = Friction Angle (Estimated) R = Rock Core Sample V = Field Vane Shear mpf = Minute per Foot PID = Photoionization Detector N/A = Not Applicable

	Depth (ft)		SAMPLE INFORMATION				N	B			
Elev. (ft)		Casing Pen. (bpf)	Sample No.	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Log	Sample Description & Classification	H ₂ 0 Depth	Remarks
80	-		1D 2D	2-4	24/14	5-12- 11-11 21-40- 8-3			0.3 Grass / Topsoil (FILL) Medium dense to dense, ASPHALT PAVEMENT RUBBLE (FILL)		
75 - - -	5		3D \(\sqrt{1}	5-7	24/18	1-4-2-1		\bowtie	5.0 Loose, gray, silty CLAY, some sand, some gravel (FILL) 6.0 Loose, gray, SAND & GRAVEL, trace silt (FILL) Loose, gray, sandy SILT, with root hairs	_	
70 -	10		4D \(\sqrt{\psi} \)	10-12	24/24	4-5-8- 11	q _P =4-9 ksf		10.0 Very stiff to hard, gray, clayey SILT, with frequent sand seams	-	
65 — -	15		5D	15-17	24/24	5-6-5-3			15.3 Medium dense, light brown, silty SAND, some gravel, with occasional sandy silt layers		
60 -	20		6D	20-22	24/24	7-5-6-9			22.3 Probable Weathered BEDROCK Refusal at 22.7 feet		

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made

BORING / WELL 10-12-2022 25-0742.GPJ SWCE TEMPLATE.GDT 7/9/25

HAMMER CORRECTION FACTOR: _____

BORING NO.: B-405

B-405

1 of 1

25-0742

6/10/2025

6/10/2025

KEY TO NOTES & SYMBOLS <u>Test Boring and Test Pit Explorations</u>

Stratification lines represent the approximate boundary between soil types and the transition may be gradual.

Key to Symbols Used:

w - water content, percent (dry weight basis)

qu - unconfined compressive strength, kips/sq. ft. - laboratory test

 S_v - field vane shear strength, kips/sq. ft. L_v - lab vane shear strength, kips/sq. ft.

qp - unconfined compressive strength, kips/sq. ft. – pocket penetrometer test

O - organic content, percent (dry weight basis)

W_L - liquid limit - Atterberg test
 W_P - plastic limit - Atterberg test
 WOH - advance by weight of man
 WOR - advance by weight of rods

HYD - advance by force of hydraulic piston on drill

RQD - Rock Quality Designator - an index of the quality of a rock mass.

 γ_T - total soil weight γ_B - buoyant soil weight

Description of Proportions: Description of Stratified Soils

Parting: 0 to 1/16" thickness
Trace: 0 to 5% Seam: 1/16" to 1/2" thickness
Some: 5 to 12% Layer: ½" to 12" thickness

**Y"

**Alternating: 0 to 1/16" thickness

**Alternating: 0 to 1/16" thickness

**Alternating: 0 to 1/16" thickness

"Y" 12 to 35% Varved: Alternating seams or layers
And 35+% Occasional: one or less per foot of thickness
With Undifferentiated Frequent: more than one per foot of thickness

REFUSAL: <u>Test Boring Explorations</u> - Refusal depth indicates that depth at which, in the drill foreman's opinion, sufficient resistance to the advance of the casing, auger, probe rod or sampler was encountered to render further advance impossible or impracticable by the procedures and equipment being used.

REFUSAL: Test Pit Explorations - Refusal depth indicates that depth at which sufficient resistance to the advance of the backhoe bucket was encountered to render further advance impossible or impracticable by the procedures and equipment being used.

Although refusal may indicate the encountering of the bedrock surface, it may indicate the striking of large cobbles, boulders, very dense or cemented soil, or other buried natural or man-made objects or it may indicate the encountering of a harder zone after penetrating a considerable depth through a weathered or disintegrated zone of the bedrock.

APPENDIX D

Laboratory Test Results

Report of Gradation

ASTM C-117 & C-136

Project Name SOUTH PORTLAND ME - PROPOSED MTA CROSBY MAINTENANCE

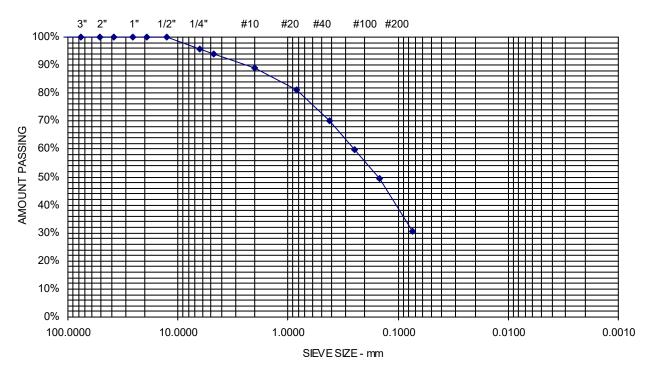
BUILDING - GEOTECHNICAL ENGINEERING SERVICES

Client HARRIMAN ASSOCIATES

 Project Number
 25-0742

 Lab ID
 33142G

 Date Received
 6/12/2025


 Date Completed
 6/17/2025

LEAH YOUNGE

Tested By

Material Source B-401, 4D, 15-17

STANDARD DESIGNATION (mm/µm)	SIEVE SIZE	AMOUNT PASSING (%	1
150 mm	6"	100	
125 mm	5"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	100	
6.3 mm	1/4"	96	
4.75 mm	No. 4	94	5.9% Gravel
2.00 mm	No. 10	89	
850 um	No. 20	81	
425 um	No. 40	70	63.4% Sand
250 um	No. 60	60	
150 um	No. 100	49	
75 um	No. 200	30.7	30.7% Fines

Comments: w = 11%

Report of Gradation

ASTM C-117 & C-136

Project Name SOUTH PORTLAND ME - PROPOSED MTA CROSBY MAINTENANCE

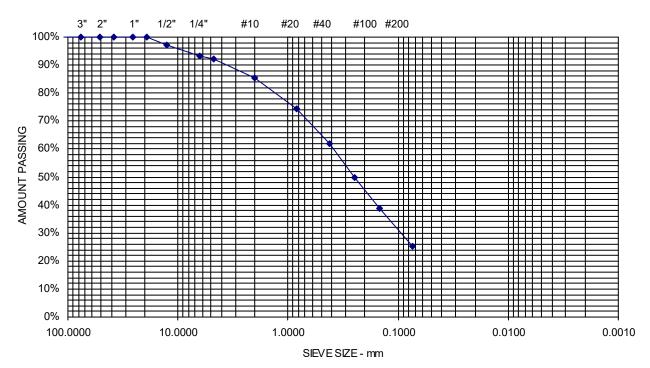
BUILDING - GEOTECHNICAL ENGINEERING SERVICES

Client HARRIMAN ASSOCIATES

 Project Number
 25-0742

 Lab ID
 33141G

 Date Received
 6/12/2025


 Date Completed
 6/17/2025

LEAH YOUNGE

Tested By

Material Source B-402, 6D, 15-17

STANDARD DESIGNATION (mm/µm)	SIEVE SIZE	AMOUNT PASSING (%	1
150 mm	6"	100	
125 mm	5"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	97	
6.3 mm	1/4"	93	
4.75 mm	No. 4	92	7.8% Gravel
2.00 mm	No. 10	85	
850 um	No. 20	74	
425 um	No. 40	62	66.9% Sand
250 um	No. 60	50	
150 um	No. 100	39	
75 um	No. 200	25.2	25.2% Fines

Comments: w = 13.6%